
Graphics Software Architecture
Syllabus

Bulletin Description

Fundamentals of modern software graphics, and how these can be efficiently
implemented in C/C++. Core topics include geometric primitives, scan
conversion, clipping, transformations, compositing, image sampling.
Advanced topics may include gradients, antialiasing, filtering, parametric
curves, geometric stroking. Students will develop a graphics engine,
evaluated for functionality, clarity, and performance.

Textbooks and Resources

There is no textbook for this class; (we have the internet).

Course Description

Computer graphics are everywhere, so much so that we often lose sight of the
fact. Desktops, set-tops, laptops, tablets, book-readers, phones, and now
watches, all have displays to communicate with us, and the applications they
host (web browsers and mobile apps mostly) rely on graphics engines to do
the actual work of pushing pixels.

In this course we will create a 2D graphics engine from the ground-up. It will
begin simple, but over the course it will be extended to add new APIs and
capabilities.

● colors
○ blending
○ textures
○ advanced : filtering, dithering

● geometry
○ filling rectangles, polygons
○ triangles
○ advanced : splines

● transforms
○ matrices
○ clipping

Our engine will also be the test-bed where we learn to flex our Computer
Science muscles, revisiting core ideas through the lens of graphics.



● integer and floating point numerics
● memory organization and alignment issues
● compression
● performance
● debugging

Target Audience

The course has been designed for advanced undergraduates and first year
graduate students, who are already comfortable coding in C/C++, and are
ready to apply and extend those skills in the domain of computer graphics.
Graphics is an old field, but one with constant pressure from the “real world”
to push software techniques to match the latest HW developments. If you
want to know how the CPU really works, what low-level operations are slow
or fast, or just what goes on when your phone screen lights up, this may be
the class for you.

Prerequisites

Basic System Architecture, Algorithms, Data Structures
Comfortable coding in C/C++
Basic Linear Algebra and Differential Calculus

Goals and Key Learning Objectives

Students will learn to write a 2D graphics engine from the ground-up. They
will learn how to structure a library’s API. They will learn to test the
correctness, improve the readability, and measure the performance of their
code, and they will also encounter the inevitable tradeoffs that can occur
when they try to optimize for all three.

Course Requirements

Course assignments are organized around designing and refining a graphics
library in C++. Some time will be devoted in class to coding/debugging, but
much of that work will need to occur outside of class.

Students are encouraged to discuss ideas and techniques with their peers,
but each student is to build their own library, writing all of the code
themselves.

Grading Criteria

Your grade in this class will be based on:



● Programming assignments (approx 90%)
● Final examination (approx 10%)

Course Policies

All programming assignments are due at 6pm on their due date. Each
24-hour period following the original deadline will reduce the assignment’s
score by 15%.

Exceptions to this requirement must be approved by the instructor in
advance.

Honor Code

Students are encouraged to discuss assignments and various strategies and
techniques to accomplish them. They are also encouraged to share general
coding techniques (esp. around debugging and performance). In all cases,
however, the organization and implementation of the assignments must be
the sole work of the student.

Unacceptable collaboration on assignments includes:

● Copying or sharing (verbatim or substantially similar) code.
● Working with individuals who are not presently members of the

course.
● Code that is jointly authored or authored by entirely or in part by

another individual.

If you copy or transcribe one or more lines of code from any other
student/individual, or copy any code from any website or internet source, or
base any code found on any website or internet source without attribution,
you are in violation of the Honor Code.

Course Schedule

Approximate sequence of topics, with 6 programming assignments. Specifics
will vary as needed.

Day 1 Course Introduction
Day 2 Color Theory
Day 3 Framebuffers
Day 4 Blending



Day 5 PA1 Due -- review in class

Day 6 Coordinates
Day 7 Polygons
Day 8 Clipping
Day 9 More Blending
Day 10 PA2 Due -- review in class

Day 11 Matrices
Day 12 Shaders
Day 13 Sampling
Day 14 PA3 Due -- review in class

Day 15 Concave polygons
Day 16 Concave polygons 2
Day 17 Paths
Day 18 Gradients
Day 19 PA4 Due -- review in class

Day 20 Curves
Day 21 Gradient Tiling
Day 22 Image Tiling
Day 23 PA5 Due -- review in class

Day 24 Quads
Day 25 Triangles
Day 26 Compose Shaders
Day 27 Triangles 2
Day 28 PA6 Due -- review in class

Disclaimer

“The professor reserves the right to make changes to the syllabus, including
project due dates and test dates. These changes will be announced as early as
possible.”


